
 

 

  
Abstract—In this work the authors present a mathematic 

laboratory experience where the concepts of discrete dynamic 
systems are introduced in Algebra and Analytical Geometry subject 
with the purpose of using computer packages to familiarize students 
with recent developments at an early stage, in this case cellular 
automaton models are used as a dynamical system with discrete 
values in space, time and state. In this experience, computer scientists 
and mathematicians work together to carry out interdisciplinary 
projects which present discrete data management to first-year 
engineering students. Starting from the theoretical concepts, different 
cellular automata have being presented with interesting applications 
for connecting and integrating the computational mathematics in 
engineering teaching process. 
 

Keywords—Discrete dynamic systems, cellular automata, 
computational mathematics.  

I. INTRODUCTION 
IMPLE problems can be formulated, increasing the 
difficulties using simple programming assignments 

algorithms and generating a gradually process where students 
arrive at complex works that would have involved time-
consuming efforts without computer support. 

This innovative activity is carried out by the Computer 
Laboratory of Basic Science of our University in order to 
introduce the mathematical developments to discrete variable 
events. The starting point is not whether content or processes 
have priority in the learning process, but making sure that 
learning becomes meaningful and functional.  

Computer tools currently available are used to develop 
students’ skills in the design of mathematical modeling with 
one discrete variable by teaching the fundamental basics of 
cellular automata (CA) in order to show the existing relations 
with symbolic calculus and the applications which these have 
with system resolution and modeling.  

These applications are wide, ranging from microscopic 
simulations of Physics and Biology to macroscopic simulations 
of social and geological processes (Our translation) [1].  

CAs are among the simplest mathematical representations of 
dynamical system that consist of more than a few – typically 
nonlinearly – interacting parts [2].  

As such CAs are extremely useful idealizations of the 
dynamical behavior of many real systems, including physical 
fluids, molecular dynamical systems, natural ecologies,  
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military command and control networks , economy fire 
spreading, epidemiology and many others [3] [4]. Because of 
their underlying simplicity CAs are also powerful conceptual 
engines with which to study general pattern formation [2]. 

CAs consists of a regular array of identically programmed 
units called cells or sites that interact with their neighbors’ 
subjects to a finite set of rules prescribed by local transitions. 
All sites make a regular lattice and they evolve in discrete time 
steps as each site assumes a new value based on the values of 
some local neighborhood of sites and a finite number of 
previous time steps [5]. 

As M. Resnick suggests, the performance of this model is 
governed, not by a centralized authority but by the local 
interaction among decentralized components [6]. 

Researchers have tried to develop different algorithm which 
can model different applications, in the beginning of the 
eighties Stephen Wolfram studied a family of simple one-
dimensional CA rules, famous as Wolfram rules, and these 
simplest rules are capable to represent complex systems. 

According to Wolfram: CAs are examples of mathematical 
systems constructed from many identical components, each 
simple, but together capable of complex behavior [7]. Some 
basic characteristics as regards the structure which the CA has 
are described. They represent a discrete system where the 
space, the time and the states of the system are all discrete and 
have the following properties: Space is represented by a 
regular lattice in one, two, or three dimensions; each site, or 
cell in the array of the CA can be in one of a finite number of 
states [8].  

II. BACKGROUND ON CELLULAR AUTOMATA 
From a theoretical point of view, some main concepts play 

an important role in CAs  models:  

A. The physical environment 
This defines the universe on which the CA is computed. 

This underlying structure consists of a discrete lattice of cells 
with a rectangular, hexagonal, or other topology. Typically, 
these cells are all equal in size; the lattice itself can be finite or 
infinite in size, and its dimensionality can be 1 (a linear string 
of cells called an elementary cellular automaton), 2 (a grid), or 
even higher dimensional. In most cases, a common—but often 
neglected—assumption, is that the CAs lattice is embedded in 
a Euclidean space [3].  
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B. The cells’ states 
Each cell can be in a certain state, where typically an integer 

represents the number of distinct states a cell can be in, e.g., a 
binary state. Note that a cell’s state is not restricted to such an 
integer domain; a continuous range of values is also possible, 
in which case we are dealing with coupled map lattices. We 
call the states of all cells collectively a CAs global 
configuration. This convention asserts that states are local and 
refer to cells, while a configuration is global and refers to the 
whole lattice [3].  

C. Neighborhood 
The neighborhood of a lattice site consists of the site itself 

and its nearest neighbor sites, called neighbors. The size of 
neighborhood is the same for each cell in the lattice. In the 
simplest case, i.e. a one-dimensional lattice, the neighborhood 
consists of the cell itself plus its adjacent cells.  In a two-
dimensional rectangular lattice there are two kinds of 
neighborhoods that are commonly defined:  

A Von Neumann neighborhood consists of the site and the 
four nearest neighbors, situated above, below, right and left as 
shown in Fig.1 below. 

 

 
Fig. 1 Von Neumann neighborhood 

 
A Moore neighborhood consists of the site and the eight 

nearest neighbors as shown in Fig.2 below. 
 

 
 

Fig. 2 Moore neighborhood 
 

D. Lattice Boundaries. Periodic Boundaries 
The nearest neighbors of sites along the sites of a lattice are 

determined differently for various boundary conditions. The 
way these conditions are defined will impact directly on the 
automata behavior. The periodic boundaries which are used in 
the modeling of the CA used in the target activity are defined. 
To illustrate this criterion, the corresponding Moore 
neighborhoods are shown below for each site in the following 
simple lattice: 

1 2 3 
4 5 6 
7 8 9 

 
This type of boundaries is defined when the neighbors of the 

sites on the borders of the lattice are set in the following way: 
 

9 7 8  7 8 9  8 9 7 
3 1 2  1 2 3  2 3 1 
6 5 4  4 5 6  5 6 4 

           
3 1 2  1 2 3  2 3 1 
6 4 5  4 5 6  5 6 4 
9 7 8  7 8 9  8 9 7 

           
6 4 5  4 5 6  5 6 4 
9 7 8  7 8 9  8 9 7 
3 1 2  1 2 3  2 3 1 
           

The nearest neighbor left of a site on the left border is the 
site in the same row on the right border. In the same way, the 
neighbors on the right of the cells on the right border are 
analyzed. The nearest neighbor above site on the top border is 
the site in the same column on the bottom border. In the same 
way, the neighbors on the bottom order are analyzed. 

E. Evolution Rule 
Another basic component worth mentioning is the Evolution 

Rule which defines the state of each cell according to the 
immediate previous state of the neighborhood. This evolution 
is determined by a mathematical function which captures the 
influence of the neighborhood over the target cell. 

F. Virtual Clock 
The virtual clock is a clock which will generate 

simultaneous ticks to every cell indicating that the evolution 
rule must be applied to modify or maintain the state of the cell. 
This component fulfills the parallelism condition, i.e. all the 
cell area updated at the same time [9]. 

III. GAME OF LIFE ALGORITHM 
The Game of Life, which was created by the British 

mathematician J. H. Conway in 1970s, is the most famous CA. 
More computer time has been spent on running this game than 
on any other calculation and it was the first program executed 
by the Connection Machine, the world's first parallel 
computer. According to Gaylord & Wellin: it is the forerunner 
of so-called artificial life (or a-life) systems which are of great 
interest today, not only for their biological implications, but 
for the development of so-called intelligent agents for 
computers [5].  

This automaton is a game of cero players, which implies 
that its evolution is determined by its initial set-up and there is 
no need of any further data entry. The game unfolds over a 
bidimensional grid as the game board. Each position on the 
board is called cell and it has 8 neighbor cells which are the 
nearest to each of them, including the diagonal ones (Moore 
neighborhood). The cells have two states, living or dead, 
which are represented by the numbers 1 and 0 respectively. 
The number and arrangement of living cells on the board 
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evolve along the discrete time units. All cell states are taken 
into account to calculate their state in the following time.  All 
cells are updated simultaneously. The transitions depend on 
the number of neighbor cell which are alive. A dead cell with 
exactly 3 living neighbors will be born in the next turn. If a 
living cell has 2 or 3 neighbor living cells, the following turn it 
will still be living. In any other case, it will die or remain dead 
due to loneliness or overpopulation. 

The game set out will continue until 2 identical consecutive 
states are obtained, or rather, until a certain number of 
predetermined transitions are reached. 

To start the modeling of this game, an initial cell array over 
the board is set at the time 0=t , represented by the following 
grid: 

0001
0011
0011
1000

 

 
 Fig. 3 below shows each element on the board and its 

neighbors considering a Moore neighborhood with periodic 
boundaries. 
 

 
 

Fig. 3 Moore neighborhood on initial grid 
 

It is possible to determine the number of living neighbors in 
each of the initial positions, counting the numbers of living 
neighbors which are around each cell:  

 

3233
3244
3334
2234

 

 
Comparing the state of each cell of the game board in time 

t and the number of living neighbors, the following state in 
time 1+t can be set up. 

Fig. 4 below shows the transition from initial time 0=t  to 
1=t . To visualize some examples, if we consider de state of 

de second element on first board row, it has 3 living neighbors 

so this cell will be born at 1=t  but first cell on third row of 
the board will be dead at next turn due to overpopulation. 

 

 
Fig. 4 Evolution from 0=t  to 1=t  

 
Fig. 5 shows evolution from 1=t  to 2=t . On the last row 

of the game board two cases of surviving rules are highlighted. 
 

 
Fig. 5 Evolution from 1=t  to 2=t  

  
At the time instance 3=t , a board with all dead cells is 

obtained as shown in Fig. 6 below. The following turn, time 
4=t , the same result will be obtained, so the game will finish 

by obtaining two consecutive similar states. 
 

 
 

Fig. 6 Evolution from 3=t  to 4=t  

IV. LABORATORY PROJECT: DEFINING AND 
DEVELOPING A COMPUTATIONAL SIMULATION 

MODEL 
In the context of meaningful learning, the students' activities 

must be oriented in a school system based on research and 
development of appropriate strategies for connecting and 
integrating the computational mathematics and the basic 
technologies and applied in Engineering to promote the 
multidisciplinary approach to the curriculum content 
corresponding to the plans of study, aiming to train 
professionals capable of solving complex models with the use 
of technologies. 

The existence of simulation tools transformed the 
programming environments toward more collaborative spaces, 
with the updated listings of increasingly complex systems but 
with broad application in the various areas that comprise the 
engineering, it is possible to design methodological strategies 
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that integrate the knowledge of the compartmentalized 
disciplines. 

The developments that have experienced the mathematical 
software and the affinity that the students have to be linked 
with the technologies, imposes on the university teachers 
makes the effort to transform the teaching-learning process in 
the process of learning investigating [10].  

The present experience shows the representation of the 
Game of Life using specific software (MATHEMATICA, 
Wolfram Research). To do this, the board and the way 
neighborhood for each cell is obtained as well as the transition 
rules should be set up. 

The board is represented by a square matrix of order 4 St, 
and each of its entries is the state of a particular cell at a given 
time t . 

The following step is to define the function which returns 
the number of neighbors alive of each cell of the board. To 
model this automaton, the Moore neighborhood is considered 
which is made up by the 8 neighbors around the position which 
is often identified with a cardinal point according to the 
position of the central cell: north, northeast, east, southeast, 
south, southwest, west and northwest. Fig. 7 below shows this 
Moore neighborhood. 

 

 
 

Fig.7 Moore neighborhood 
 

    It is possible to obtain a matrix that shows a particular 
neighbor by performing elementary operations on tS .  

For example, to obtain a matrix tN whose elements ijn  

represent north neighbor of each site ijs  in tS  at a certain time 

t , it is necessary to move down every row on tS  by properly 
interchanging them. Ec. (1) shows oN  that is north neighbors 
of each site ijs  at time 0=t . 

 

   (1) 

 
To find the matrix oNE whose elements represent the 

neighbor in the Northeast position of each ijs  in oS , first 

move the rows (f) downwards as shown in (1) above and then, 
on this resulting matrix, interchange columns (c) to the left. 
See (2) below. 

 

    (2) 

 
Similarly, it is possible to obtain matrices that show a 

particular neighbor for each position in the state space and 
therefore to know the number of living neighbors of ijs  adding 

these 8 matrices of neighbor positions. 

 
 

Fig. 8 Number of living neighbors’ matrix at 0=t  
 

Fig. 8 above shows how to obtain number of living 
neighbors matrix at time 0=t . 

Analyzing values of homologous elements on tS  and tV , 
the next state into which ijs  will evolve can be obtained. 

The evolution rule is function to the state of a cell ijs  and 

the number of living neighbor which it has.   
     Rule [ ijst : cell state ijs , ijvt : number of living neighbors 

ijs  ] = ijlst + . 

A living site with two living nearest neighbor sites remains 
alive: [ ] 121 =,Rule . 

 

 
 

Fig. 9 Game consecutive states 
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Any site (no matter if living or dead) with three living 
nearest neighbor sites stays alive or is born: [ ] 13 =,_Rule . 

All other cases, one cell either remains dead or die: 
[ ] 0=_,_Rule . 

The following matrices: oS ; 1S ; 2S ; 3S and 4S  show the 
consecutive states which the game reaches at each instance t . 
Matrices can be represented graphically with a black site for 
living cells and a white one for dead cells. Fig. 9 shows both 
representations. 

The number of different 2D geometric cellular automata that 
can be constructed from all possible rules is unimaginably 
large. For simple binary cells, with 8 neighboring cells there 
are 8+1 cells that influence a given cell (previous state of a cell 
can influence it’s next state), which leads to 2512 possible 
binary combinations or approximately 10154 different CAs, of 
which the Game of Life is only one of them. In general, for an 
Nth Dimensional Geometric CA with (m) neighbors, there are 

k2 possible rules available for the Cellular Automata, where 
12 += mk [11]. 

Game of Life  rules are  simple  enough  for  anyone  to  
understand,  yet  they lead  to  an endless number of different 
patterns, and to significant complexity [11]. Such as gliders, 
guns, puffers, ‘oscillating’ particles with different translation 
rates and spontaneous particle emission from some oscillating 
patterns among others. 

It is interesting to observe different these patterns or life 
forms. In the evolution space there are four classes of 
behavior: 
1) Evolution leads to a homogeneous state, in which all cells 

eventually attain the same value 
2) Evolution leads to either to either simple stable states or 

periodic or separated structures 
3) Evolution leads to chaotic nonperiodic patterns 
4) Evolution leads to complex, localized propagating 

structures. 
 

 
 

Fig. 10 Glider pattern 
 

One of the most intriguing pattern is an oscillatory 
propagating pattern known as glider, shown in Fig. 10, it 

consist of five living cells and reproduces itself in a diagonally 
displaced position once every four iteration. 

Software allows visualizing an animation of any pattern 
evolution, shown in Fig 11. Glider gives the appearance of 
walking across the screen. 

 

 
 

Fig. 11 Glider pattern animation 
There are some distinct moving self-replicating figures, 

which are individually referred to as spaceships. Unlike the 
glider, these spaceship figures are horizontally displaced. See 
Fig. 12 
    

 
 

Fig. 12 Spaceship pattern 

 
Fig.13 shows a pattern that disappears within a number of 

iteration:  
 

 
 

Fig. 13 Cross pattern 
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 Some initial configurations reach a stable state which does 
not change or disappear, as seen in Fig. 14 

 

 
 

Fig. 14 Stable pattern 
 
Live cells survive only if surrounded by two or three cells 

and a new cell is born only if surrounded by exactly three 
living cells. Initial configurations consisting of either single or 
neighboring live cells immediately yield the null state. 

Survival in Game of Life requires a minimum of three living 
cells. Fig.15 shows the fate of one three-live initial state; its 
evolution is a period-2 state. Structures that lead into a 
periodic behavior are called oscillators. 
 

 
 

Fig. 15 Oscillator 
 
 In general, it’s not possible to predict whether a particular 

starting configuration will eventually die out or not. There is 
no short-cut rout to the final outcome of this game’s evolution, 
it is necessary to await game’s own final outcome. 

 Combining several gliders in one single lattice produces 
different behaviors. Fig.16 below shows evolution resulting of 
combining two gliders placed in two opposite corners of a 
rectangular lattice. Game reaches null configuration in 
seventeen time-steps. 
  

 
 

Fig.16: Evolution of two gliders 
 

 Fig. 17 below shows game’s evolution from a starting 
configuration that combine three gliders placed in different 
corners of a rectangular lattice. The final state of this pattern is 
a stable oscillatory pattern. 

 

 
 

Fig. 17 Evolution of three gliders 
 
Placing four oscillator patterns on the same board evolves 

into a stable pattern after nine iterations as shown in Fig. 18 
below. 

 

 
 

Fig. 18 Evolution of four oscillator pattern 
 
From Fig. 19, we observe a pattern, called R-pentamino, 

which evolution is wildly unstable, expanding outward and 
continually undergoing change while scattering various bits of 
debris in all directions. This continues for many iterations 
steps marking a time beyond which all the various local 
patterns remain isolated and noninterracting. The significance 
of this evolution actually lies in the appearing of the oscillatory 
and propagating pattern known as glider [11]. 

 

.  
 

Fig. 19 R-pentamino initial evolution  
 
Students investigated these patterns and modified initial set-

up to watch diverse evolution processes of the game. 
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Laboratory work classes are an integral part of any educational 
program and their purpose is bringing the students closer to 
real situations of the area of studies. 

 

V. ENGINEERING APPLICATION: POLLUTANT 
DIFFUSION IN A LIQUID FORM 

CA application is the pollutant diffusion in a liquid form, 
for example the water flows which are presented in the 
projects of environmental remedial. In fact, this tool can be 
useful to guide and support the processes applied to purify 
contaminated water. It is not easy to obtain a numeric solution 
from a mathematical expression for such a phenomenon. 
However, there are ways to approach the problem by 
mathematical modeling of fluid transport: some of these 
methods will be studied in higher courses of engineering 
careers, CAs often provide a simpler tool that preserves the 
essence of the process by which complex natural patterns 
emerge [12]. 

 

 
 

Fig. 20 Initial concentrations of pollutant 
 

Fig.20 shows a model of a liquid form with high pollutant 
concentrations on the high left corner of the analyzed section. 

  

 
 

Fig. 21 CA Simulated Pollutant Diffusion 
 
Fig. 21 above shows the evolution of the pollutant diffusion 

throughout time until all section under analysis is covered and 
a constant concentration is reached:  

Students are required to interpret the software graphic 
output of pollutant diffusion and to compare it with other 
software outputs which can result from changing the initial 
configurations of the pollutant concentrations. This 
mathematical model is applied to understand the distribution 
of pollutants by formulating a 2D diffusion. 

VI. CONCLUSION 
The CAs have been used in different disciplines 

successfully. Currently, attention is raised towards the 
development of models which can carry out complex tasks 
such as cryptography, image processing and turbulence 
analysis, among others. 

 This is the reason why we consider important to introduce 
CA concepts and applications in engineering teaching, taking 
as a starting point the study of mathematical models with 
discrete variable systems. 

By introducing experiences as the ones described in the 
present paper for Algebra and Analytical Geometry, we search 
for a change of perspective which can see algorithms as a 
mathematical key activity   and computer science as 
complementary knowledge to run those algorithms and 
manage their outputs.  

Strategy design is highlighted as the outset of the study of 
mathematical models to solve discrete variable problems 
integrating the computational mathematics with the 
technological areas of the engineering curriculum while 
incorporating new learning styles. 

REFERENCES   
[1] G. Merino, “Use of a Cellular Automaton to Create a Diffusion Model 

of Pollutants in a Soil-Water System”. Journal of Mathematics: Theory 
and Applications, vol.18, no.1, 2011, pp. 63-76. 

[2] A. Ilachinski, “Cellular Automata: A Discrete Universe”, World 
Scientific, 2001, pp. 175-185. 

[3] J. Quartieri, N. Mastorakis, G. Iannone, C. Guarnacci, “A Cellular 
Automata Model for Fire Spreading Prediction”, Proceedings of 3rd 
WSEAS International Conference on Urban Planning and 
Transportation, 2010, pp. 173-179. 

[4] M. Dascalu, G. Stefan, A. Zafiu, A. Plavitu, “Applications of Multilevel 
Cellular Automata in Epidemiology”, Proceedings of the 13th   WSEAS 
international conference on Automatic control, modelling & simulation, 
2011, pp. 439-444. 

[5] R. Gaylor, P. Wellin, “Computer Simulations with Mathematica: 
explorations in complex physical and biological systems”.  Springer-
Verlag, 1995. 

[6] M. Resnick, “Turtles, Termites, and Traffic Jams”, MIT Press, 1994. 
[7] S. Wolfram, “Cellular automata as Model of Complexity. Nature, vol. 

311, no. 5985, 1984, pp. 419- 424. 
[8] R. Gaylor, K. Nishidate, “Modeling Nature: Cellular Automata 

Simulations with Mathematica”, Springer-Verlag, 1996. 
[9] J. Muñoz, “Autómatas Celulares y Física Digital”, Memorias del Primer 

Congreso Colombiano de Neuro Computación. Academia Colombiana 
de Ciencias Exactas, Físicas y Naturales, Bogotá, 1996. 

[10] A. Tinnirello, E. Gago, M. Dádamo, M. Valentini, “Design, Simulation 
and Analysis of a Fluid Flow System through Multiphysics Platform”, 
Proceedings of 7th International Conference of Education, Research and 
Innovation, 2014, pp. 5847-5855. 

[11] T. Ostoma, M. Trushyk, “Cellular Automata:  Theory and Physics. A 
New Paradigm for the Unification of Physics”, Cornell University 
Library, 1999. 

[12] S. Wolfram, “Computer Software in Science and Mathematics, 
Scientific American”, vol. 251, 1984, pp. 188-203. 

 
 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017 

ISSN: 1998-0140 319


	I. INTRODUCTION
	II. BACKGROUND ON CELLULAR AUTOMATA
	A. The physical environment
	B. The cells’ states
	C. Neighborhood
	D. Lattice Boundaries. Periodic Boundaries
	E. Evolution Rule
	F. Virtual Clock

	III. GAME OF LIFE ALGORITHM
	IV. LABORATORY PROJECT: DEFINING AND DEVELOPING A COMPUTATIONAL SIMULATION MODEL
	V. ENGINEERING APPLICATION: POLLUTANT DIFFUSION IN A LIQUID FORM
	VI. Conclusion



